3 research outputs found

    High Fidelity Dynamic Modeling and Nonlinear Control of Fluidic Artificial Muscles

    Get PDF
    A fluidic artificial muscle is a type of soft actuator. Soft actuators transmit power with elastic or hyper-elastic bladders that are deformed with a pressurized fluid. In a fluidic artificial muscle a rubber tube is encompassed by a helical fiber braid with caps on both ends. One of the end caps has an orifice, allowing the control of fluid flow in and out of the device. As the actuator is pressurized, the rubber tube expands radially and is constrained by the helical fiber braid. This constraint results in a contractile motion similar to that of biological muscles. Although artificial muscles have been extensively studied, physics-based models do not exist that predict theirmotion.This dissertation presents a new comprehensive lumped-parameter dynamic model for both pneumatic and hydraulic artificial muscles. It includes a tube stiffness model derived from the theory of large deformations, thin wall pressure vessel theory, and a classical artificial muscle force model. Furthermore, it incorporates models for the kinetic friction and braid deformation. The new comprehensive dynamic model is able to accurately predict the displacement of artificial muscles as a function of pressure. On average, the model can predict the quasi-static position of the artificial muscles within 5% error and the dynamic displacement within 10% error with respect to the maximum stroke. Results show the potential utility of the model in mechanical system design and control design. Applications include wearable robots, mobile robots, and systems requiring compact, powerful actuation.The new model was used to derive sliding mode position and impedance control laws. The accuracy of the controllers ranged from ± 6 µm to ± 50 µm, with respect to a 32 mm and 24 mm stroke artificial muscles, respectively. Tracking errors were reduced by 59% or more when using the high-fidelity model sliding mode controller compared to classical methods. The newmodel redefines the state-of-the-art in controller performance for fluidic artificial muscles

    Machine Design Experiments Using Gears to Foster Discovery Learning

    Get PDF
    Machine Design Experiments Using Gears to Foster Discovery Learning For the typical undergraduate engineering student the topic of gears is introduced and discussed in several courses. Early exposure may be in a physics course or in a first dynamics course,where gear pairs are presented as an idealized means to change speed ratios and torque ratios.They are used for mechanical advantage or to achieve desired speed, and the focus is usually on kinematics. Since gears have inertia they store kinetic energy and are part of the dynamic equations of motion of mechanisms and machines. For mechanical engineering students, gears are a core component studied in courses such as \u27kinematics and dynamics of mechanisms\u27 and \u27machine design\u27, where the nomenclature and design equations are developed for various types of gears. There may be exposure to real gears in a mechanical engineering laboratory; more often, students may see gears passed around in class and as part of demonstrations.In this paper we describe new experiments that were designed to provide mechanical engineering students with discovery learning experiences with gears and mechanical systems using gears.The suite of practical experiments presents students with a range of challenges that require them to analyze, measure, design, and fabricate gears. Activities in the experiments include: (1) Identifying gear types (spur, helical, bevel, etc.) and appropriate applications (automotive transmissions and differentials, drills, gear head motors). (2) Disassembling and re-assembling a kitchen mixer (with design and manufacturing questions related to its gears). (3) Disassembling and re-assembling an automotive HVAC baffle sub-assembly (with measurement of train ratios, and design and manufacturing questions related to its gears). (4) Designing the gear mechanism for driving the minute and hour hands of a gear clock given a known yet arbitrary drive speed. Fabricating the gears of the clock via rapid prototyping (3D printing), assembling the clock, and then testing the timing accuracy.In addition to reporting the details of the experiments, we share experiences of students and teaching assistants in their use and effectiveness. We provide insights into how well students became familiar with types and nomenclature of gears and understood the applicability of different gears to actual real-world problems. The intent of the experiments is to effectively enhance mechanical engineering students\u27 awareness of gears and expand their knowledge and confidence in the use of gears in machine and mechanism design

    New Pistol Grip Control for an Electric Utility Aerial Bucket Reduces Risk of Forearm Muscle Fatigue

    No full text
    Overhead line workers have anecdotally reported elevated levels of fatigue in forearm muscles when operating the pistol grip control that maneuvers an aerial bucket on a utility truck. Previous research with surface electromyographic (sEMG) recordings of forearm muscles corroborated these reports of muscle fatigue. A new pistol grip was designed that reduces the applied force by 50% in all directions of movement. In laboratory testing, sEMG signals were recorded from the upper extremity muscles of twenty subjects, who operated a conventional-force pistol grip and the 50% reduced-force control to move a 1/15 scale model of an aerial truck boom. The muscle that resulted in the greatest sEMG activity (extensor digitorum communis (EDC)) was the muscle that workers typically pointed to when they reported forearm muscle fatigue from using the control. The reduced-forced pistol grip decreased EDC sEMG by an average of 5.6%, compared to the conventional control, increasing the maximum endurance time by 38% according to muscle fatigue models. This study was the first to quantify muscular activity of a new aerial bucket pistol grip control and the results show promise for improving the occupational health of electric utility overhead line workers, specifically reducing muscle fatigue. Before the new design of the pistol grip can be commercialized, it must be tested in the field on actual equipment
    corecore